Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Sens Actuators B Chem ; 377: 133009, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2122810

ABSTRACT

Point of care (POC) diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are particularly significant for preventing transmission of coronavirus disease 2019 (COVID-19) by any user at any given time and place. CRISPR/Cas-assisted SARS-CoV-2 assays are viewed as supplemental to RT-PCR due to simple operation, convenient use and low cost. However, most current CRISPR molecular diagnostics based on fluorescence measurement increased the difficulty of POC test with need of the additional light sources. Some instrument-free visual detection with the naked eye has limitations in probe universality. Herein, we developed a universal, rapid, sensitive and specific SARS-CoV-2 POC test that combines the outstanding DNase activity of Cas12a with universal AuNPs strand-displacement probe. The oligo trigger, which is the switch the AuNPs of the strand-displacement probe, is declined as a result of Cas12a recognition and digestion. The amount of released AuNPs produced color change which can be visual with the naked eye and assessed by UV-Vis spectrometer for quantitative detection. Furthermore, a low-cost hand warmer is used as an incubator for the visual assay, enabling an instrument-free, visual SARS-CoV-2 detection within 20 min. A real coronavirus GX/P2V instead of SARS-CoV-2 were chosen for practical application validation. After rapid virus RNA extraction and RT-PCR amplification, a minimum of 2.7 × 102 copies/mL was obtained successfully. The modular design can be applied to many nucleic acid detection applications, such as viruses, bacteria, species, etc., by simply modifying the crRNA, showing great potential in POC diagnosis.

2.
25th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2021 ; : 1445-1446, 2021.
Article in English | Scopus | ID: covidwho-2012281

ABSTRACT

A portable and low-cost electrochemical immunosensor platform is developed for rapid (13 min) and accurate quantification of SARS-CoV-2 serum antibodies (10.1 ng/mL − 60 µg/mL for IgG and 1.64 ng/mL − 50 µg/mL for IgM). No obvious cross-reactivity with other interference proteins was observed. Stable performance of the immunosensor within 24-week storage at room temperature was achieved. The practical use of the immunosensor was demonstrated using real patient samples. © 2021 MicroTAS 2021 - 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL